Customer Data Plattform

Kundenbindung über alle Kanäle hinweg


Worum geht´s?

Sie haben bereits ein gut gestaltetes Customer Relationship Management (CRM) und suchen nun nach einer Möglichkeit, Ihre Marketingmaßnahmen weiter zu optimieren? Mit einer Customer Data Plattform (CDP) lassen sich vielfältige Daten über Ihre Kunden sammeln, die gezielt für Marketingaktivitäten genutzt werden können. Die zentrale Plattform ermöglicht das Ausspielen ausschließlich relevanter Informationen in perfekt passenden Momenten an den Kunden.

Mit einer Customer Data Plattform erhalten Unternehmen ein Tool an die Hand, das Marketing und Vertrieb bei der Verbesserung der Kundenerfahrung und der Generierung höherer Umsätze datengetrieben unterstützt.

Sie möchten mehr darüber erfahren, wie eine Customer Data Plattform eingesetzt werden kann, um wertvolle Informationen über Kunden zu sammeln, auszuwerten und zu nutzen? Dann laden Sie sich unseren User Guide über die Customer Data Plattform herunter – Sie erhalten eine detaillierte Anleitung für Ihr Handeln!

  • User Guide: Customer Data Plattform


    In unserem User Guide zeigen wir an praktischen Anwendungsfällen, welche neuen Möglichkeiten eine Customer Data Plattform für Unternehmen eröffnet.


>>> DIREKT ZUM USER GUIDE "KUNDENDATEN RICHTIG NUTZEN"



Was ist eine Customer Data Plattform? Eine Definition

Eine Customer Data Plattform ist eine Datenbanksoftware, die Kundendaten aus verschiedenen Datenquellen zusammenführt mit dem Ziel, präzise Kundenprofile zu generieren. Die Plattform ermöglicht ein gezieltes und einfaches Abrufen dieser Daten sowie ihre Verknüpfung miteinander und bietet darüber hinaus eine Vielzahl verschiedener Funktionen, mit denen Daten segmentiert und analysiert werden können.

Gartner definiert eine CDP als „eine vom Marketing gesteuerte Lösung, die eine dauerhafte, einheitliche Nutzer-Datenbank schafft, welche Nutzerdaten für andere Lösungen zugänglich macht.” Eine CDP ermöglicht es also, ALLE unternehmensweiten Datenquellen (Onsite, Offsite, CRM, BI, Offline, etc.) über ALLE Kanäle (Facebook, Email, Display, Criteo, etc.) hinweg sauber miteinander zu verbinden. Datensilos werden (endlich) aufgebrochen, vereint und ermöglichen somit (endlich) eine 360° Ansicht auf das wichtigste Asset eines jeden Unternehmens – die Kundschaft.

Zusammenfassend lässt sich sagen, dass der Zweck einer Customer Data Plattform die Erstellung individueller Kundenbilder für Marketing und Vertrieb ist, mit dem Ziel, optimal auf die Bedürfnisse der Kund*innen eingehen zu können.

Welche Daten werden gesammelt?

Transaktionsdaten wie Käufe, Anfragen, Beschwerden
Verhaltensdaten: Wo finden Kund*innen bestimmte Produkte? Was kaufen sie als nächstes?
Demografische Daten wie Alter, Geschlecht, Wohnort, Sprache, Beruf, Einkommen, Familienstand

Customer Data Plattform: Erklärung grundlegender Funktionen

Wie kann eine Botschaft die Kundschaft optimal erreichen? In einer Customer Data Plattform laufen alle Aktivitäten auf einer einzigen digitalisierten Prozesslandschaft ab. Wenn Prozesse synchronisiert sind, können Mitarbeitende aus Marketing und Vertrieb wichtige Abhängigkeiten und Interaktionen transparent machen und eine bessere Sicht auf Kund*innen erhalten.

Die folgende Abbildung visualisiert, welche Kundenreaktionen Marketing und Vertrieb ohne Customer Data Plattform hervorrufen können:

Wer sich hingegen von einer Datenbanksoftware mit kombinierten Kundendaten unterstützen lässt, kann von „einfühlsamer Marketingkommunikation“ profitieren:


>>> LESEN SIE AUCH DEN BLOGARTIKEL “DER GLÄSERNE KUNDE – FLUCH UND SEGEN ZUGLEICH?“



Wie unterscheidet sich das CDP von CRM und DMP?

In der Marketinglandschaft existieren neben der Customer Data Plattform noch weitere Systeme, die der CDP zu ähneln scheinen. Im Folgenden sollen die drei relevantesten Begriffe unter die Lupe genommen werden: Wie unterscheiden sich das Customer Relationship Management-System (CRM), eine Data Management Plattform (DMP) und eine Customer Data Plattform (CDP)?

Die Systeme bildeten sich auseinander heraus und die Entwicklung vollzog sich vom CRM zur DMP und dann zur CDP. : Das Customer Relationship Management System (CRM) zeigt sich als wertvoll, um Informationen zu sammeln und anzureichern. Auch zur Unterstützung von Marketingaktionen wie Leadkampagnen erfüllen CRMs ihren Zweck und es lassen sich einfache Reportings mit ihrer Hilfe erstellen. Wer allerdings einen Schritt weitergehen möchte, um eine durchgängige User Experience abzubilden, der stößt an die Grenzen des Systems. Eine 360-Grad-Sicht auf die Kundin bzw. auf den Kunden lässt sich nicht abbilden.

Ein weiterer Nachteil des CRMs ist, dass es lediglich registrierte Kund*innen erkennt. Aus diesem Grund ist es nicht in der Lage, einen ganzheitlichen Kundendatensatz mit Informationen aus Social Media, Werbekampagnen und Verhaltensdaten abzubilden. Eine Echtzeitinteraktion mit der Kundschaft ist leider auch nicht möglich.

Mehr Möglichkeiten bietet die Data Management Plattform (DMP) als Advertisingtechnologie. Ihr Wert zeigt sich in der Möglichkeit, Mediakampagnen zu planen und umzusetzen. Die Plattform verknüpft anonyme IDs miteinander und führt Second- und Third-Party-Daten zusammen, was ihr einen großen Vorteil verschafft. Für Unternehmen ergibt sich die Chance, Nutzergruppen mit passenden Informationen zu bespielen. Der Nachteil ist allerdings die kurze Lebensdauer der Daten, denn diese können nur so lange genutzt werden, wie ein Cookie lebt. Hinzu kommt, dass sich Segmente inzwischen aufgrund der Cookie-Banner-Problematik weniger gut auffinden lassen.

Aus Marketingsicht entspricht die Customer Data Plattform (CDP) dem Goldstandard. In dieser können sowohl First-, Second- als auch Third-Party-Daten offline und strukturiert in das System integriert werden. Ein großer Vorteil ist die Möglichkeit, alle Daten unabhängig vom jeweiligen Kanal in einem Kundenprofil zusammenzuführen. Auf Grundlage dieser Daten ist es möglich, …

personalisierte Empfehlungen auszuspielen
Zielgruppen besser zu aktivieren
Upselling-Initiativen zu realisieren
Maßnahmen in Echtzeit zu unterstützen

Nachteil einer CDP ist, dass sie sich auf Daten stützt, die aus Kampagnen stammen. Wichtig sind daher hochwertige, gut gepflegte Datensätze in einem modernen CRM, also einem ordentlich gepflegten Kundenstamm.

CRM, DMP und CDP – Unterschiede auf einen Blick:


Welche Vorteile bieten CDP?

1) Datenanalyse

Die CDP führt alle Kundeninformationen an einem zentralen Ort zusammen. Auf diese Weise liegen sowohl Transaktionsdaten wie Käufe oder Beschwerden als auch Verhaltensdaten über die Kundschaft vor. Das Unternehmen kann analysieren, wo Kund*innen bestimmte Produkte gefunden haben und was sie als nächstes kaufen. Da auch demografische Daten wie Alter und Einkommenshöhe abgespeichert sind, können die Daten tiefgreifend ausgewertet werden, um Vorhersagen über zukünftiges Kaufverhalten zu treffen und Marketingaktionen zu planen.

2) Personalisierungen entlang der Customer Journey

Wie können Personalisierungen auf Grundlage der vielen Kundeninformationen aus der CDP aussehen? Stellen wir uns vor, eine Kundin oder ein Kunde kauft einen Drucker. Über die Kundschaft mit ähnlichen demografischen Daten wissen wir, nach welchem Zeitintervall sie in der Regel erneut Druckerpatronen einkaufen. Da wir die Verhaltensdaten dieser Kundin bzw. dieses Kunden kennen, wissen wir, dass er seine Newsletter regelmäßig öffnet. Wir schicken ihm also eine automatisierte E-Mail mit einem Angebot für Druckerpatronen. Das Angebot erreicht die Kundin bzw. den Kunden zur richtigen Zeit (Druckerpatronen sind aufgebraucht), mit dem richtigen Inhalt (Angebot Druckerpatronen) auf dem richtigen Kanal (per E-Mail). Hierbei ist besonders hervorzuheben, dass das Druckerpatronen-Angebot eben nicht darauf basiert, welches Produkt gerade verfügbar ist, sondern auf einer Berechnung, welches Produkt mit hoher Wahrscheinlichkeit gekauft werden wird.

3) Kanalübergreifendes Customer Journey Mapping

Die Customer Data Plattform unterstützt Unternehmen dabei, die Kundenreise zum Produkt zu analysieren und positive User-Experience-Momente zu erkennen. Diese werden ausgebaut und zum richtigen Zeitpunkt in der Customer Journey an den Kunden herangetragen – kanalübergreifend. Die Informationen und Botschaften an die Kundschaft sind dabei zielgerichtet, zahlen also auf das primäre Geschäftsziel ein.

4) Verbesserte Onlinewerbung

Onlinewerbung lebt von Daten. Mit einer CDP können Unternehmen auf Grundlage der vielfältigen Kundeninformationen, individuelle Onlinewerbung für ihre Kundschaft erstellen. Diese richtet sich an den Zielen und Wünschen der Kundschaft aus und wird auf den passenden Marketingkanälen ausgespielt. Zudem erreicht sie die Kund*innen zum passenden Zeitpunkt („Das wollte ich tatsächlich gerade bestellen!“). Durch die passgenaue Ausspielung erzielt Onlinewerbung eine deutlich höhere Erfolgsquote.

5) Kampagnen-Automatisierung

Die Automatisierung von Kampagnen umfasst verschiedene Elemente wie Website, E-Mail und Web-Formulare und spart Unternehmen wichtige Zeit ein. Die vordefinierten Kampagnenelemente werden über Marketinglisten gesteuert und lassen sich dank der Customer Data Plattform vollständig auswerten und gegenüberstellen. Auf diese Weise bestimmen Unternehmen bei der Kampagnenauswertung die Effizient der Elemente in einem Soll-/Ist-Vergleich.

6) Kombination mit künstlicher Intelligenz

In einer CDP werden Daten mit künstlicher Intelligenz kombiniert. Dies ermöglicht:

Optimale Datenanalyse
Möglichkeit für Voraussagungen
Sinnvolle Empfehlungen für Kund*innen


Welche Datenquellen nutzt eine CDP?

Eine Customer Data Plattform nutzt zahlreiche Datenquellen. Die folgende Liste gibt einen Überblick darüber, woher welche Informationen in die CDP eingespeist werden:

Identität: Endgeräte, Logins, Persistent IDs
Kundenbeziehung: Kundenstatus, Persönliche Angaben, Marketingeinwilligungen
Onlinerecherche: Browsingverhalten, Suchanfragen, Merkzettel und Wunschlisten
Onlinebestellung: Warenkörbe, Bestellungen, Umfragen
Situation: Zeitpunkt, Standort und Bewegung, Wetter, Ereignisse und Events
Kampagnen: Responses
Angebote: Couponnutzung
Soziale Medien: Interaktionen, Beiträge, Themen, Meinungen, Stimmungen
Kundenservice: Anfragen, Produktnutzung, Zufriedenheit
Point of Sale: Besuche, Einkaufsrouten, Kassenbons, Umfragen
Loyalty: Punktesammlung, Rewards


Wie kann eine CDP eingesetzt werden?

Eine Customer Data Plattform gibt Nutzer*innen hilfreiche Impulse, auf deren Grundlage vielversprechende Handlungen möglich werden. Die Impulse ergeben sich aus drei Möglichkeiten der Datennutzung:

Entdecken
Voraussagen
Empfehlen

Um eine Vorstellung über die Einsatzmöglichkeiten einer Customer Data Plattform zu erhalten, schauen wir uns ein Beispielszenario an. In diesem speisen wir Kundendaten eines Onlinehändlers für Herrenbekleidung in das System ein und schauen, was die CDP aus den Daten macht.

Möglichkeit 1: Entdecken

Zunächst können wir Zusammenhänge entdecken: Das System formuliert für uns griffige Thesen, die sich aus den Daten ergeben. Eine These könnte lauten „Männliche Kunden haben eine gesteigerte Kaufwahrscheinlichkeit für Jacken“. Anhand dieser Daten kann eine Diskussion gestartet werden.

Nutzer*innen benötigen keine speziellen Fähigkeiten, um die CDP zu bedienen, sondern müssen lediglich wissen, was sie erfahren möchten. Die Plattform verlangt kaum technisches Knowhow von den Nutzer*innen, sondern ermöglicht eine nahezu rein fachliche Bedienung.

Möglichkeit 2: Voraussagen

Für Voraussagen sind zwei Schritte notwendig: Erstens werden einige Parameter angegeben, die sich mit wenigen Klicks einstellen lassen. Zweitens überlegen die Nutzer*innen, welche Wahrscheinlichkeit ausgegeben werden soll. Die Customer Data Plattform meldet nach diesen Einstellungen zurück, ob ausreichend Daten vorhanden sind und sagt die Wahrscheinlichkeit voraus. Hierfür existiert zu jedem Datensatz ein Feld, in welchem das System die Formel berechnet.

Die Kundendatenplattformen bringen in der Regel die gängigsten Anwendungsfälle out-of-the-box mit, zum Beispiel:

Wie groß ist die Wahrscheinlichkeit, dass wir diesen Kunden verlieren?
Voraussagen
Wie groß ist die Wahrscheinlichkeit, dass wir die Verkaufschance gewinnen?

Möglichkeit 3: Empfehlungen

Die Wenn-dann-Empfehlungen sind individualisierbar auf allen Kanälen. Das könnte beispielsweise wie folgt aussehen: „Wenn Sie 10 % Ihrer männlichen TOP Kunden, mit denen Sie im letzten Jahr den meisten Umsatz generieren konnten, nächsten Monat das Angebot für eine Herrenjacke unterbreiten, dann erhöhen Sie die Kauf-Wahrscheinlichkeit“. Die Customer Data Plattform optimiert auf diese Weise die Prozesse der Retail-Logistik. Die vielversprechendsten Kunden (Top 10 % nach Umsatz) erhalten zum richtigen Zeitpunkt (nächsten Monat) das passende Angebot (Herrenjacke).

Egal, ob Kunden bisher online oder in der Filiale gekauft haben, kann die CDP das Kaufverhalten analysieren und eine Liste der umsatzstärksten Kunden für Marketing-Aktionen zusammenstellen. Dubletten werden in diesem Zusammenhang bereinigt.

Ein Beispiel aus der Praxis ist ein Case von Hugo Boss: als das Unternehmen begann, eine CDP einzusetzen, erhielt es beispielsweise einen sehr viel verlässlicheren Blick auf die eigenen Kundendaten. Eine Identity Resolution bereinigte die Daten, sodass keine redundanten Datensätze zu Kund*innen mehr vorlagen. Auf diese Weise fand Hugo Boss heraus, dass das Unternehmen anstelle von rund 9 Millionen Käufer*innen „nur“ rund 8 Millionen Käufer*innen verzeichnet. Grund für die Abweichungen waren Duplikate, die 18 % des Kundenstamms ausmachten. Auch für den Kundenumsatz und die Transaktionen pro Kundin bzw. Kunde wurden jeweils Unterschiede von 15 % ermittelt.

Hugo Boss ermittelte aus den bereinigten Datensätzen die Top 10 % ihrer Kundschaft nach Umsatz. Hier fiel bereits in der Anzahl ein großer Unterschied auf: die bereinigten Daten ermittelten rund 400.000 Kund*innen. Ohne die bereinigten Daten wären es rund 800.000 Kund*innen gewesen, die Hugo Boss mit Marketing-Aktionen angesprochen hätte. Die hohe Anzahl der Duplikate ergibt sich daraus, dass die Top-Käuferschaft auf den verschiedensten Kanälen mit der Marke interagieren und daher verschiedene Kundenprofile von ihnen erstellt worden sind. Die Identity Resolution ist also ein essentieller Schritt, um verlässliche Kundendaten zu erhalten.

Die Customer Data Plattform ermöglicht, mit wenigen, gezielten Kampagnen bestmögliche Effekte zu erzielen. Das Ergebnis ist eine deutliche Erhöhung der Conversion, da die Kundenansprache über die Customer Data Plattform ganz gezielt erfolgt – im Mailing, im Newsletter oder direkt im Onlineshop. Diese Conversion Rate Optimierung wiederum führt neben der Umsatzsteigerung auch zu reduzierten Kosten, da beispielsweise weniger Mailings insgesamt verschickt werden müssen und sogar große Rabattaktionen obsolet werden.

Hugo Boss beispielsweise sprach seine Top 10 % Kundschaft gezielt in Direct Mailings an und konzentrierte sich auf eine Reduzierung der Kaufabbrüche und Absprungraten und konnte mit diesen drei Maßnahmen allein den Umsatz innerhalb eines Jahres um eine Millionen Dollar steigern.


Welche Unternehmen brauchen eine Customer Data Plattform?



Wie das Video zeigt: modernes Marketing wird durch Daten bestimmt. Eine Customer Data Plattform arbeitet mit Kundendaten und bietet ein personalisiertes Nutzererlebnis. Doch nicht jedes Unternehmen ist schon bereit für eine CDP. Um herauszufinden, ob Unternehmen eine Customer Data Plattform benötigen, arbeitet man in der Regel nach dem Reifegradmodell. Darin werden fünf Entwicklungsstufen unterschieden, die aufeinander aufbauen. Ob ein Unternehmen eine Customer Data Plattform braucht, hängt maßgeblich von der Einordnung im Reifegradmodell ab, das hierfür den Bezugsrahmen absteckt.

In welche Entwicklungsstufe lässt sich Ihr Unternehmen verorten?

Daraus ergibt sich die Folgefrage: Was ist für Ihr Unternehmen der nächste Schritt zu einer besseren Kundenansprache, um die Customer Experience zu verbessern? Prüfen Sie, wo Ihr Unternehmen steht und leiten Sie die nächsten Handlungsschritte ab!

Entwicklungsstufe 1: Customer Relationship Management-System (CRM)

Das Unternehmen arbeitet ohne Personalisierung und steuert Interaktionen manuell. Auch Daten werden weitestgehend per Hand erfasst und es entstehen Kundenprofile im CRM mit rudimentären Daten. Auch Dopplungen können auftreten. Die Marketingmaßnahmen werden daher vor allem opportunistisch getrieben, d.h. sie reagieren auf eine aktuelle Situation oder passen sich der aktuellen Auftragslage an.

Beispielsweise könnte die Geschäftsführung das Marketingteam auf Produkte hinweisen, die gerade verfügbar sind und gepusht werden sollen. Daraus folgen Marketingaktivitäten für eine breite Zielgruppe – unabhängig davon, ob das Produkt von der Einzelperson überhaupt benötigt wird oder sogar bereits gekauft wurde. Was in dieser Stufe fehlt, ist eine tiefgreifende Datenanalyse, auf der gezieltere Marketingmaßnahmen aufbauen könnten.

Charakteristika der Entwicklungsstufe 1:

Kein personalisiertes, wenig strukturiertes Marketing
Kein personalisiertes, wenig strukturiertes Marketing
Marketingmaßnahmen = Einzelmaßnahmen
Keine Analyse der Daten

Entwicklungsstufe 2: CRM und additive Systeme

In der zweiten Entwicklungsstufe ist eine fachbereichsbezogene Personalisierung möglich, das bedeutet einzelne Subsysteme sind in der Lage, sich miteinander auszutauschen. Das Unternehmen kann eine Segment-spezifische Personalisierungsstrategie umsetzen, die auf einer semi-automatischen Datenverarbeitung basiert. Allerdings ist die Personalisierung noch statisch und konzentriert sich auf einen einzigen Touchpoint wie den Onlineshop.

Die Stärke von Entwicklungsstufe 2 besteht in der individuellen Ansprache und einer Automatisierung von Marketingprozessen auf diesem einen Kontaktpunkt. Die personalisierte Kommunikation schafft bessere Kundenerlebnisse, die Kund*innen langfristig an ein Unternehmen binden können. Welche Produkte für eine Marketingkampagne relevant sind, bestimmen dabei vorwiegend Algorithmen. Nachteil: Andere Touchpoints der Kund*innen werden noch nicht berücksichtigt.

Charakteristika der Entwicklungsstufe 2:

Semi-automatische Datenverarbeitung
Segment-spezifische, statische Personalisierung
Personalisierung nur an einem einzelnen Touchpoint (z. B. Onlineshop)

Entwicklungsstufe 3: Customer Data Plattform (CDP)

Das Unternehmen hat eine markenweite Personalisierungsstrategie verankern können, die auf einer vollautomatisierten Datenverarbeitung basiert. In dieser Entwicklungsstufe existieren bereits mehrere unabhängige Touchpoints, an denen ein personalisiertes Erlebnis für Kund*innen ermöglicht wird. Die Interaktion mit der Kundschaft erfolgt allerdings zeitversetzt durch Batchprozesse. Das heißt, Kundenanfragen werden streng nacheinander abgearbeitet. Hierdurch ergeben sich üblicherweise Wartezeiten für Kund*innen und die Kundeninteraktion erfolgt stark zeitversetzt.

Charakteristika der Entwicklungsstufe 3:

Vollautomatische Datenverarbeitung
Mehrere unabhängige Touchpoints
Batchprozesse

Entwicklungsstufe 4: CDP mit übergreifender Data-Intelligence

Das Unternehmen verarbeitet Daten über mehrere unabhängige Touchpoints hinweg, sodass eine unternehmensweite Personalisierungsstrategie umgesetzt werden kann. Grundlage hierfür ist die Vernetzung aller Informationen in einer einzigen Datenbasis, anhand derer das Kundenverhalten vorhergesehen werden kann, was wiederum datenbasierte Marketingmaßnahmen ermöglicht, die im Voraus granular geplant werden können.

Charakteristika der Entwicklungsstufe 4:

Personalisierung beinahe in Echtzeit
Cross-Channel Kundenerlebnisse
Vollautomatische Verarbeitung von Stamm- und Transaktionsdaten

Entwicklungsstufe 5: Customer Experience Plattform (CXP)

In der fünften Entwicklungsstufe ist eine 1-zu-1-Personalisierung an allen Touchpoints möglich. Man spricht von einem 360-Grad-Blick auf die Kundschaft. Das Datenmanagement ist komplett zentralisiert sowie vollständig in den Vertriebskanälen integriert, sodass ein nahezu perfektes Kundenverhalten vorausgesagt werden kann.

Im Gegensatz zur vorhergegangenen Entwicklungsstufe erfolgen die Interaktionen mit den Kund*innen in der CXP in Echtzeit, also ohne Verzögerungen und Wartezeiten. Über alle Kanäle hinweg erfahren Kund*innen ein bestmögliches Kundenerlebnis.

Charakteristika der Entwicklungsstufe 5:

360-Grad-Blick auf die Kundschaft
1:1-Personalisierung an allen Touchpoints
Vollständige Integration der Vertriebskanäle
Komplett zentralisiertes Datenmanagement
Kundeninteraktionen in Echtzeit
Maximierung des Kundenwertes über alle Kanäle


>>> LESEN SIE "24 TIPPS FÜR DIE IMPLEMENTIERUNG EINER CUSTOMER EXPERIENCE PLATTFORM"



CDP als Marketing- und Sales-Schnittstelle im Unternehmen

Die Customer Data Plattform hebt die Aktivitäten von Marketing und Sales auf ein neues Level, in dem sie einen zentralen Überblick für ein optimales Kundenerlebnis ermöglicht. Grundlage für detaillierte Kundensicht ist das Aufbrechen von Datensilos und eine Zusammenführung von Daten aus mehreren Quellen in einem einzigen System.

Stellen Sie sich mit einer Customer Data Plattform der Herausforderung, die vielen Daten, die in Ihrem Unternehmen zusammenkommen gewinnbringend an einer zentralen Stelle zu nutzen.


>>> ENTDECKEN SIE UNSER STARTERPAKET FÜR EINE ERFOLGREICHE DATA DRIVEN EXPERIENCE"